LAND MANAGEMENT PLAN

Submitted by

Stan Fleming
Ron and Monica Olson
20804 Edwards Rd. E.
Bonney Lake WA 98391

To
Kittitas County

For
TRANSFER from DESIGNATED FOREST LAND

TO

Open Space-Timber – 13.18 acres
and
Open Space-Open Space - 7.00 acres

Tax Parcel Number:
20-14-18000-0033
20.18 acres

Legal Description
Lot 4, Bk 26/p179
in Sec. 18, T20N, R14E

PLAN DATE: July, 2005

Plan Field Work by
Loren Hiner, Consulting Forester
Silvicultural Solutions
100 Elk Pond Road
Cle Elum, WA 98922
509-674-6433

Plan Prepared by:
Phil Hess, Consulting Forester
Forest & Land Services
PO Box 9
Cle Elum, WA 98922
509-952-0678
flhess@televar.com
INTRODUCTION

This plan is being submitted by the new owners for transfer 13.18 acres from Designated Forest Land to Open Space-timber and 7 acres DFL to Open Space-Open Space pursuant to RCW 84.34, Chapter 458-30 WAC and Kittitas County Commissioners Resolution 94-25 and 2002-99. There are no improvements and none are planned for.

Qualification for Open Space under Resolution 94-25 and 2002-99

The plan preparer has examined the property and determined that:

13.18 acres will qualify for Open Space-timber under RCW 84.34 and meets the Criteria for Timberland in Resolution 94-25.

and

7 acres will qualify for Open space in Resolution 94-25 under:

1. B. Open Space Definitions as follows:
 (1) Conserve and enhance natural and scenic resources; and,
 (3) Promote conservation of soils and wetlands

The land meets the Criteria for Open Space Land Classification under:

2. A. (3) Game preserve and nesting grounds; and
2. B. (3) Aquifer recharge areas and areas of significant springs as water resources; and
2. C. (3) Development would destroy natural cover resulting in loss of natural habitat.

GOALS and OBJECTIVES

The owners purchased the property for investment and recreation and are committed to a long-term management plan. The goal is to maintain and enhance vegetative cover to provide wildlife habitat and protect soil and water resources. The owners intend to gain a working knowledge of applicable resource stewardship practices from information available through WSU Extension Forestry, Washington State Department of Natural Resources, Washington Department of Fish and Wildlife, USDA Natural Resource Conservation Service, and forest land resource consultants.
Plan implementation will assure stewardship of all resources inherent with a wildland landscape, providing significant natural resource and environmental benefits to the neighborhood and community.

LOCATION and LAND USE HISTORY

The property is located approximately 2 miles east of Easton via the powerline road and a private road system. Traditionally, the predominant land use in this area has been timber production, and wildlife habitat. These uses continue, but most of the private land in the vicinity has been sold in smaller parcels for rural residential or recreational homesites or simply as a land investment. The property is delineated on the maps and aerial photo accompanying this plan.

LAND FORM and SOILS – MANAGEMENT CONSIDERATIONS

Property lies virtually flat at an elevation of 2120 feet approximately 800 feet north of the Yakima River. Average annual precipitation is 25 to 30 inches.

Soils are the basic resource. All plant growth is dependent on soil characteristics. Soils are made up of four main ingredients: mineral particles, organic matter, water and air. Soil texture refers to the make up of the mineral particle size: sand, silt, and clay. Soils that have a larger proportion of clay and silt are fine textured. A higher proportion of sand results in a coarse texture soils. Finer soils are usually more productive than coarse soils, but don't drain as quickly, are very susceptible to compaction, and are more easily eroded than coarse soils. A soil made of roughly equal amounts of sand, silt and clay are referred to as loams. Loams tend to be more fertile, and have good water holding capacity. Organic matter – decaying vegetation and woody material - is an important component. Soils with high organic matter have better structure and leads to greater fertility and water holding capacity. Since plant roots need air to breathe and water to grow, soil texture and structure are very important. More than half of the feeder roots of trees and other plants are in the top 6" to 8" of the soil. Soil compaction and other site disturbances reduce soil pore space for air and water and results in lower site productivity.

Classifying and mapping soils provides the resource manager with an important tool for judging productivity and choosing the proper cultural practices that will not damage the soil resource.

The soil survey map classifies one soil series: Xerofluvents (9422) as shown on the attached soil map.
Xerofluvents - (9422—0-5% slopes)

This soil is formed from a coarse textured alluvium deposited by past river activity. The series is a deep, somewhat excessively drained soil with a relatively low water holding capacity. There is a sand and gravel restrictive layer at about 18". It is classified as a forest soil with site index rated at 115 for Douglas fir (DF), and 105 for ponderosa pine. This means that these species will grow to heights of 115 feet and 105 feet respectively in 100 years. Erosion potential is rated low but it is still important to maintain a well established herbaceous ground cover. Compaction potential is also rated low, but heavy equipment should not be operated during wet conditions to avoid soil compaction which in turn, will adversely affect tree health and growth.

Existing ground cover is sufficient to provide soil protection and habitat diversity. There are no indications of erosion problems.

Any fresh soil disturbances should be promptly seeded to a grass mix to protect the surface from puddling and erosion, and help prevent the invasion of noxious weeds. The recommended seed mix is:

- 10% Chewings Fescue
- 30% Draylar Upland Bluegrass
- 30% Creeping Red Fescue
- 30% Covar sheep Fescue

Contact Phil Hess for the best place to acquire this custom mix.

VEGETATION RESOURCES and MANAGEMENT

There are two vegetation types

1) Wetland – 7 acres, DFL to Open-Open
2) Upland – 13.18 acres, DFL to OS-t

Wetland, 7 acres transferring from DFL to Open-Open

There are very few conifers and several large cottonwoods. There is a high water table, with standing water through most of the summer. The tall shrub layer is vine maple, willow, alder, dogwood and thimble berry. The herbaceous layer is veratrum, skunk cabbage, and variety of other wetland forbs and grasses.
Typical view of the 7 acres of Open-Open

Upland, 13 acres transferring from DFL to Open Space-timber

This is a good site for commercial forestry in combination with maintaining and enhancing wildlife habitat.

The stand was partial cut harvested in the late 1980’s, leaving a wide spaced residual overstory of DF, PP, GF, and WRC. Trees range in size from 8” to 30” DBH (diameter breast height) and 40’ to 100’ in height. Some of the GF has fading crowns and mortality due to root disease.
The stand meets the full stocking requirements of RCW 76.09 but there are some small openings where seedling inter planting is suggested.

There is a well established advanced conifer regeneration understory of DF, PP, WWP and GF. ranging in size from 1' to 12' in height. These trees were planted and naturally regenerated after the last harvest entry.

The tall shrub species include vine maple, willow, cottonwood, elderberry, ocean spray, bittercherry, hawthorn, and hazelnut. Medium to low shrubs include service berry, wild rose, red currant, goose berry, Oregon grape, snowberry, and spirea. The herbaceous layer includes a variety of grasses, trailing blackberry, clover, bracken fern, peavine, smilicina, vanilla leaf, horsetail, tarweed and numerous other forbs.
On the south and southwest boundary there are closed canopy stands of mature 2nd growth DF, PP, GF mixed with cedar.

There are several wildlife trees (WLT's) and coarse woody debris (CWD) on the forest floor, both of which together with the shrub/herbaceous layer, are important for habitat diversity and a healthy forest ecosystem.

The management goals for the property are driven by the following objectives:

♦ Create and maintain stands of health trees on the 13.18 acres of Upland.
♦ Maintain 7 acres of wetlands as is.
♦ Maintain and enhance wildlife habitat values
♦ Forest fuels management where needed to protect future structures in the Upland area.
♦ Control Noxious Weeds

All of these objectives are inter-connected and include the essential element of managing vegetation to minimize risk of property damaging wildfire. Implementation of this plan will achieve a balance of forest fuel levels, wildlife habitat values and the other objectives. On-the-ground prescriptions can be customized for site specific vegetation conditions and to fit the owner’s use of the property.
Open Space-timber and
Open Space Management Plan

Stewardship Principles

It is important to recognize that forest plant communities are in a
continuing state of change. This change, referred to as succession, is
imperceptible to occasional observation because it occurs very slowly over
time. Forests that have not been "disturbed" in many years may appear to be
static or permanent, but this is never the case. Disturbance is the most
common agent for change – natural as in a wild fire, or human influenced as
in a timber harvest. Planned for "change" can enhance habitat, reduce risk
of stand replacement wild fire and lead to vegetation management goals.
The idea is to work with nature to achieve a desired condition or values.

The 7 acres of Open-Open should be maintained as is to comply with
the qualifying criteria in Kittitas County Commissioners Resolution 94-25.

![Typical view of the 7 acres of Open-Open to remain undisturbed to
preserve natural cover and habitat. There is standing water in this portion
during most of the summer.](image)

Management Suggestions. 13.18 acres Open Space-timber

This stand currently meets all the requirements to qualify for OS-t tax
status. The following are suggestions and forestland stewardship issues to
be aware on this portion of the property. Bear in mind these ideas should be
adapted to fit the landowner's use of the property:
1. **Stocking Control -- Tree density or spacing**

As with any forest property there are risks. Common or likely in this area are bark beetles, defoliators, root diseases, and mistletoes. There is some evidence of root disease in the GF on this parcel and the last bark beetle epidemic occurred in the early 1990’s. Fire is a risk on any forested landscape but not a serious threat to this property.

It is important to recognize that insect and diseases are a natural part of a healthy forest ecosystem. In a healthy forest there is a balance between insects and pathogens and the forest trees.

Fortunately, through management these risks can be minimized or eliminated. The key here is stocking control, meaning tree density or spacing. When trees are too close together they compete with each other for available moisture, then in dry years they become weak (stressed), lose vigor, and are more susceptible to endemic insect and disease attacks. Proper spacing is important at all ages. There are some patches of clumps where it would be beneficial to pre-commercial thin (PCT) in the next 5 to 10 years for tree growth and health.

It is important to recognize that native conifers of the Pacific Northwest have the highest levels of genetic variation found in plants. Our trees exhibit large genetic differences in seedling survival, form, growth rate, and disease susceptibility. The large tree may not be the oldest. It may be a fast growing younger tree and definitely one to save. Size is more a function of rate of growth than age.

So, when selecting to cut, as in thinning, look at genetic characteristics such as height and fullness of crown and leave the best. The objective is to improve stand conditions for future growth and health.

The best time of year to thin pine is late summer and fall.

Thinning pine in the spring and early summer can attract pine bark beetles (PBD) to the green slash and they will quickly spread to standing trees and most likely kill them. If the slash is being burned as you go then beetles won't be a problem. Winter thinning is also a good time so long as equipment is not operated on wet soils. This will cause soil compaction and is detrimental to tree health and growth. This may not be an issue on your property because most of the thick patches are heavy to DF.

The DF can be thinned at any time of year.

In young stands, it is not practical to thin out to the ultimate desired spacing with the first entry. To do so would make the leave trees too susceptible to wind, snow or ice damage. Thinning in stages will give leave trees a chance to firm up before the next entry. The first entry should remove only the smallest trees and those with the weakest crowns. As a guide in young stands, thin to where crowns are just touching or slightly over lapping. The remaining trees may still be too tight in most cases but this is ok and can
be remedied in the next entry, 3 to 5 years out. Always select to leave pines, (and western larch if present) and Doug fir and eliminate grand fir.

If in doubt on what trees to remove, contact your forester. If thinning is pre-commercial, the cut trees can be piled any a firesafe location and then left as habitat, burned in the late fall, or chipped. If you elect to chip, Mike Lind (929-6240) and Gar Hill (674-1260) both have small, portable tractor mounted chippers ideal for this kind of work.

2. Seedling Planting

In general, there are a sufficient number of young trees to result in well stocked forest in 10 to 15 years.

However, there are some small openings, as shown in this photo, where it would be desirable to have additional trees for the long term. This can be accomplished by seedling planting to DF and pine. Otherwise, vine maple and other brush will be the dominant species for a long time.

Seedlings are planted in the spring with a spot herbicide treatment to control competing vegetation. Seedlings must be from a local seed source.

For more information, seedling planting and control of competing vegetation contact consulting forester Loren Hiner at 509-674-6433. Loren has an active annual seedling planting program for small landowners and is a licensed herbicide applicator.
3. Fire Protection and FireWise

Fire is an inherent risk on any natural landscape. It is not a critical issue on this parcel, just something you will want to be informed about.

Kittitas County is a “FireWise” community, which is a program emphasizing practices designed to minimize the risk of fire to structures in the forest-urban interface. If you decide to build a structure, participation in the FireWise program will reduce (but not eliminate) the risk of a property damaging wildfire and assures the property is in compliance with the County’s “Defensible Space” formula. See attachment #1.

Defensible space is the area between a structure and an oncoming wildfire where the vegetation has been modified to reduce wildfire threat and provide firefighters an opportunity to defend the house. Live, low-growing, native vegetation is permissible in the landscaping but in a fashion that does not create a fire risk to the structure. Immediately adjacent to the buildings and decks there should be a 2 to 3 feet border of landscape gravel.

The herbaceous layer can include native pinegrass/elksedge and low growing forbs. If these species are absent then seeding to the recommended grass mix is advisable. If water is available, keeping the grasses green is ideal. Low shrubs such as Oregon grape, kinnikinnick, snowberry, and spirea can be maintained. Medium to high shrubs can be present toward the outer edges if spaced with 3 to 4 feet between crowns. Native conifer trees are permitted so long as there is 10 to 15 feet between crowns, limbs do not overhang the roof (8-foot minimum), and lower limbs are pruned to a height of 12 to 15 feet. Ponderosa pine is the preferred species but Douglas fir is acceptable if it meets the criteria.

The size of defensible space will vary depending on the type and amount of vegetation and topography. For this property 50 feet outward from the buildings is recommended. Firewood and any other flammable material should be at least 30' from the house and other buildings during the summer.

Outward from the 50 foot defensible space vegetation management can be feathered into the more natural appearing forest. Consideration is given to forest fuels, wildlife habitat features, and visual attractiveness including visual screening where desirable. It is wise to thin trees and prune (or prune only) to reduce the risk of a ground fire becoming a crown fire. This prescription is referred to as a shaded fuel break and can apply to the entire parcel or just the portions of highest risk to the improvements.

This property is in a low fire risk situation but this risk will increase with increasing level of human activity in the vicinity.

Although, FireWise landscaping is crucial, it is important to keep in mind that this objective can be met and still retain important wildlife habitat values.
4. Noxious Weeds

There are occurrences of bull thistle and Canada thistle in the OS-t portion of the property, but this will eventually be shaded out as the young forest develops. Knapweed is the most common noxious weed in the upper County but none has been observed on this parcel. If it does encroach, it is recommended that individual plants be eradicated before it is allowed to spread. The acceptable herbicide prescription recommended by the County Weed Board is included in the supplemental attachments. This treatment is effective in our area when applied at the knapweed rosette stage in May-June. Localized infestations can be treated with a back pack sprayer or a regular garden type weed sprayer using the recommended herbicide at the right stage of development.

5. Tree Health

Understanding Pine Bark Beetles

Bark beetle populations fluctuate year-to-year depending on stress causing conditions in a stand of forest trees. The most common stress problem is available moisture. During normal precipitation years, beetle populations tend to decline because vigorous trees are better able to resist beetle attacks. During drought years, such as we have recently experienced, beetle populations tend to increase, especially in over-stocked stands. Bark beetle outbreaks can last for several years depending on weather and forest conditions. The last major outbreak was in the late 1980’s and early 1990’s. We are due for another outbreak because of the current drought.

Pine Bark Beetle Facts:

1) Bark beetles only infest living trees or damaged and down trees that are still green.

2) Beetles will seek out moisture stressed trees because these trees produce less resin.

3) A vigorous tree can repel beetles with an abundance of resin flooding the entrance holes and galleries.

4) Once beetles find a suitable host tree, they release a chemical (called pheromones) to attract other beetles.

5) Bark beetles develop through 4 life stages: egg, larva, pupa, and adult. There is usually only one live cycle (or generation) per year.

6) Beetles spend almost their entire life beneath tree bark. The female will excavate an egg gallery.

7) The eggs hatch within a few weeks and the larvae feed on the inner bark of the tree, pupate and then emerge as an adult.

8) The adult beetle spends only a few days outside the bark and then will fly to locate a new host tree.
9) Bark beetle attacks often leave plainly visible evidence outside the bark such as pitch tubes, resin streams, and a reddish brown boring dust in bark crevices. Under the bark, distinctive egg galleries are specific to each kind of beetle.

10) Normal populations of bark beetles are kept in check by woodpeckers and other insect eating birds.

11) The green needles will begin to fade in the fall and sometimes not turn brown until the following year.

12) *It is a good thing to create and maintain good bird habitat in your forest.*

There are four major groups of beetles common to Central Washington pine forests. They are native and a natural part of a forest ecosystem. They all have characteristic gallery patterns and preferred host tree types.

1) **Mountain Pine Beetle (MPB)** is generally associated with stands of ponderosa pine larger than 8" DBH in older, overstocked stands. They make long J-shaped egg galleries under the bark of trees. This is the most damaging beetle in our area. It can begin in weakened trees and even spread to healthy trees.

2) **Western Pine Beetle (WPB)** will most likely attack large, old ponderosa pine with low vigor, usually in clumps. They make winding, criss-crossing egg galleries under the bark of trees.

3) **Pine Engraver Beetle (*lps*)** attack pine 5" to 8" DBH, logging slash, pre-commercial thinning slash, wind throw, or top portions of larger trees which have been weakened by drought. Out breaks are usually associated with spring and early summer drought.

4) Their egg galleries radiate out from a central chamber under the bark of trees. Branches 2 to 6 inches long extend from the central chamber. Avoid creating green slash from early winter through mid-summer.

5) **Red Turpentine Beetles** attack the lower trunk of weakened or stressed pole-sized and larger pine. Look for conspicuous globular reddish pitch masses about 1 inch across on the lower trunk. The egg galleries are irregular shaped; can be up to 1" wide and about 12" long. These beetles are rarely lethal by themselves but they will weaken the tree and make it more susceptible to MPB or WPB attacks.

Douglas fir Bark Beetles

Key Points—

1) DF bark beetles, like pine beetles, attack trees that are under stress. This can mean lack of moisture, root disease, or defoliators.

2) Foliage will turn yellow and then fade to a reddish brown by late summer or fall.
3) There will be red or yellow boring dust in bark crevices. No pitch tube, but you may see resin streamers on upper stem attacks. This is where pitch has seeped out through the beetle entry hole.

4) Egg galleries are straight, similar to Mountain Pine Beetle.

Pockets of dense DF are susceptible to these insects when trees become moisture stressed. Manage to reduce risk by proper stocking for the site.

Western Spruce Budworm (will affect Douglas fir)

This defoliating caterpillar like insect has been present in Kittitas County forests since the early 1980’s, and no doubt even before then and may be a risk to DF on this property. Population build-up run’s in cycles, usually during periods of low precipitation. The budworm is currently reaching epidemic proportions in the upper Cle Elum and Teanaway drainages and appears to be moving south.

Key Points –

1) It is a defoliating insect (eats the needles) and does not necessarily always kill the trees.

2) It will weaken trees and make them more vulnerable to bark beetles.

3) Needles will appear blighted or scorched on the tips. Needles will be bound together with webbing at branch tips.

4) The caterpillars are about 1” with green markings and white spots on the sides. Appear in the spring or early summer.

Manage stands of DF to reduce impacts with proper tree spacing and species diversity.

Dwarf Mistletoe

Mistletoe has not been observed on this parcel but it is common in the area in Douglas fir and ponderosa pine.

Basic Mistletoe Facts:

1) It is a parasitic plant depending on a tree host for water and nutrients.

2) It is specific to each species of tree. It only survives on living trees. When the tree or branch dies, so does the mistletoe.

3) The spread is relatively slow in single layer stands. The spread is usually downward.

4) Mistletoe survives by stealing water and nutrients from the tree. By itself, it is rarely a tree killer but it does weaken the tree and it will be more susceptible to bark beetle attacks in overstocked stands.
5) Mistletoe results in a branching deformity as pictured in this Douglas fir. These "brooms" provide nesting and hiding cover for birds and small mammals. The "fruiting body" is a food source.

Complete eradication is impossible. The best approach is to control by cutting heavily infected trees during thinning, or pruning the mistletoe branches in the overstory and any young trees that become infected.
Root diseases were evident during the site examination in June & July, 2005 as evidenced by grand fir mortality. The DF appears to be unaffected but this is something to watch for.

Research has confirmed that these organisms are native and a natural part of a healthy forest ecosystem. In a healthy forest there is a balance between the fungus and trees. The trees and the fungus have evolved with each other and pre-settlement periodic low intensity fires they lived in balance with each other.

There are 3 primary root rot fungi in the area: Armellaria, Laminated and Annosus, with the first two being most common. Root rot pockets are easy to identify in the forest. There will be patches of dead trees, some broken off or fallen with the root wad exposed. Often there will be a heavy patch of vine maple, oceanspray, hazelnut or alder which have responded to more sunlight reaching the forest floor.

Selective harvest will aggravate the spread of root rots because fresh stumps are quickly colonized by the fungus. The roots of these stumps in contact of roots of adjacent green trees allows the fungus to spread to these green trees and they will be dead within a year or two. In other words a “flush” of infection and mortality usually follows colonization of stumps created by selective harvesting infected trees. In any event, it is safe to say the fungus once present on a site will always be present. Normally, the fungus spreads very slowly from infected trees to adjacent trees. This may take years.

In areas that have been clear-cut and planted it is common to see pockets of dead young trees or just an individual dead tree. This is an indication the fungus is surviving in old stumps.

Host species vary in their susceptibility but all coniferous species are moderately too highly susceptible until they are 12 to 15 years old. After this age, some species become less susceptible to mortality, especially pines and western larch. There is evidence of root disease on your property, especially in stand 2. Choosing to manage for pine (PP or WWP) or larch is logical management option. If you notice infected trees, keep in mind the pocket could be ¼ acre and up to 2 acres in size. Cutting what appear to be infected trees will only aggravate the spread of the fungus to adjacent healthy trees, unless you cut all the susceptible trees in the pocket (GF and DF) and leave the pine. In this case, it will be ok to leave any dominant DF that have well formed, full crowns.
If there are infected trees that will be a danger tree to a structure site, then it is advisable to remove the trees and pull the stump with an excavator, removing as much of the root as possible. This can be done at the same time you are clearing for the house. If you are unsure of the extent of pocket contact your forester.

OTHER MANAGEMENT CONSIDERATIONS

WILDLIFE HABITAT

The shrub/herbaceous layer is well established and is providing good forage for deer and elk primarily throughout the year as well as small mammals and avian species.

Another important wildlife habitat category are snags and coarse woody debris (pieces or patches of logs and large branches on the ground). Snags include both dead standing trees and those live trees with high levels of decadence or defect. Both hard and soft snags and down woody material in various stages of decay are important. Nearly all life forms in the forest begin with decaying wood. This is why it will be important to create habitat piles with some old logging slash in a fire safe location.

In this area there are over 60 species of birds and small mammals that are dependent on snags for some or all of their life requisites and an equal number of species dependent on coarse woody debris. A cavity is excavated in a recently dead tree by woodpeckers, or "primary excavators". These cavities are later used by a maximum of 27 bird and 18 mammal species, who are "secondary cavity users" because they can't excavate a cavity. Birds help control forest insects that may be detrimental to tree health. Two to six snags per acre are desirable.

There are opportunities on the parcel to provide this important habitat and still meet silvicultural and forest fuels management objectives.

Examples are illustrated on the following pages.
This is an example of a ponderosa pine wildlife tree common in the area. Woodpeckers will create cavities in search of insects. These cavities are then used by a large group of secondary cavity nesters. A wildlife tree can be a green tree with evidence of decay or a dead tree (snag) like this one.

Save your Wildlife Trees! "Birds Eat Bugs"
Course Woody Debris (CWD) on the forest floor is a critical element for a healthy forest ecosystem. The decaying wood process provides habitat for many species of fungi, moss, lichens, invertebrates, reptiles, and amphibians that form an integral part of a healthy forest. Nearly all life forms in the forest begin with decaying wood. Also, decaying wood acts as a reservoir for water storage by slowly releasing moisture throughout the summer.

Habitat piles are simply CWD arranged in such a fashion to provide hiding cover and nesting habitat for small mammals and birds, including quail and grouse. Overtime the decay process will “change” the structure of the material adding to diversity. Habitat piles can be located to still meet FireWise objectives. Lay a foundation of criss-crossed small logs to create tunnels and cavities. You will find these to be used by wildlife soon after construction.

On your property, you can use the old logging slash and fresh material from the removal of risk trees around your campsite or PCT material to create these piles in firesafe forest openings and at the same time reduce concentrations of forest floor fuels.
Legacy logs are an important CWD component and should be retained, undisturbed if possible. Down, decaying wood provides microsites for beneficial mychorrizal fungi and a long term, time release source of humus, organic matter, phosphates and nitrogen all desirable for healthy tree growth.

SUPPLEMENTAL INFORMATION ATTACHMENTS

1) Kittitas County Recommendations for Fire Safety and Prevention, dated March, 1999
2) FireWise construction and Landscaping Checklist
3) Kittitas County Noxious Weed List
4) Kittitas County Knapweed Herbicide Recommendations
5) Insect and Disease Occurrences in Central WA.
6) Vegetation Beneficial to Wildlife
7) Some Cavity-Nesting Species in the Pacific Northwest
8) Facts about Cavity-Nesting Birds
9) Wildlife Brush Shelters
10) Federal Taxes

If you have any questions or comments, please contact the plan preparer:
Phil Hess 509-952-0678 Email: flshess@televar.com
2001 Aerial Photo of Fleming-Olson Property
Lot 4, Bk26/p179
In Sec. 18, T20N, R14E
Approx. Scale: 1" = 700 feet